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Abstract

An analytic technique is applied to solve the free convection over a heated horizontal flat surface embedded in a
porous medium. An explicit, totally analytic and uniformly valid solution is given to the so-called Cheng—Chang

equation, which agrees well with numerical results.
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1. Introduction

Convective heat transfer in porous medium has been
intensively studied over the past two decades because of
its wide applications including geothermal energy engi-
neering, groundwater pollution transport, nuclear waste
disposal, chemical reactors engineering, insulation of
buildings and pipes, storage of grain and coal, and so
on. The state of art concerning convective heat transfer
in porous media has been summarized in the excellent
monographs by Nield and Bejan [1] and Ingham and
Pop [2].

The similarity solutions for free convective boundary
layer flow in a porous medium above a heated hori-
zontal flat surface or below a cooled horizontal flat
surface where the wall temperature is power function of
the distance from the leading edge, were first considered
by Cheng and Chang [3]. The problem has important
applications in the assessment of geothermal resources
and design of underground energy storage systems. Be-
havior of the similarity equations were further consid-
ered by Chang and Cheng [4], Merkin and Zhang [5], Na
and Pop [6]. Chang and Cheng [4] investigated this
problem by the method of matched asymptotic expan-
sions in which other effects, such as fluid entrainment
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were taken into consideration. Merkin and Zhang [5]
presented numerical solutions to the similarity equation
and revealed that the solutions have a singularity under
certain conditions. Na and Pop [6] presented numerical
solutions of the similarity equations using the pertur-
bation method in combination with the Shanks trans-
formation. The similarity solutions for free convection
in porous media in other configurations have been
studied by Cheng and Minkowycz [7], Cheng [8], Ing-
ham and Brown [9], and most recently by Rees and Pop
[10], Postelnicu and Pop [11], Banu and Rees [12].

Due to its important applications in many fields de-
scribed by Cheng [13], a full understanding of the simi-
larity solutions for free convection boundary layer
above a horizontal flat surface in a porous medium is
meaningful. Although a lots of numerical results have
been reported, to our knowledge, no one has reported an
explicit, totally analytic, uniformly valid solution for this
problem. In this paper, we employ the homotopy anal-
ysis method (HAM, see [14-19]) to give such an ex-
plicit analytic solution. Unlike perturbation method, the
HAM is independent upon small or large parameters,
and has been successfully employed to many non-linear
problems. All of these applications verify the validity
and potential of the HAM as a kind of powerful analytic
tool for non-linear problems [14—19].

In this paper, we apply the HAM to give, for the first
time (to the best of our knowledge), explicit analytic
solutions of the similarity equations appeared in free
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convection above a horizontal plane in porous medium.
The validity of the analytic solution is verified by nu-
merical results.

2. Mathematical formulation

Assuming that the flow is governed by Darcy’s law
and that the boundary layer approximation holds, the
dimensionless equations governing the free convective
boundary-layer flow above a heated impermeable hori-
zontal surface (or below a cooled impermeable hori-
zontal surface) are [3]:

Py 00

2 (1)
)y x

G0 _oya oy o
9?2 dydx ox oy’

where (x, y) are the dimensionless Cartesian coordinates
along and normal to the flat surface, respectively, 0 is the
dimensionless temperature and ¥ is the dimensionless
stream function. The minus sign in Eq. (1) corresponds
to a flat surface heated upward. Assuming a power-law
variation of temperature on the impermeable surface,
the boundary condition can be given by

Yy=0, 0=x* ony=0, (3)
oy
6_)/_0’ 0=0, asy— oo. 4)

Under the transformation

0=x"g(n), W= (1+a) "xXD37r(),

= (1+0) x5, (5)
we have

I (n) + (B—3)ng'(n) + Pg(n) =0, (6)
g"(n) +3/ (g’ (n) = B/ (mg(n) =0, (7)
subject to the boundary conditions

f(0)=0, g(0)=1, f'(00) =g(o0) =0, (8)
where

= 1 j—zx' ©)

Now, we solve Eqgs. (6)—(8) by means of the HAM.
Due to the boundary condition, Eq. (8), /(1) and g(n)
can be expressed by a set of base functions

(7" exp(—nn)ln > 1,m > 0} (10)
in the forms

+o0 +o0

+oo 400

g(’l) - Z ZBnmnm eXP(‘”’?)v (12)
m=0

n=1

respectively, where 4,,, and B,, are coefficients. It is
straightforward to choose

So(n) =1 —exp(—n) — nexp(—n), (13)
go(1n) = exp(—n) + nexp(—n) (14)

as the initial approximations of f() and g(n). We
choose

0? 0
Lf:a_’72_6_777 (15)
62

as our auxiliary linear operators, which have the prop-
erties:

Ly[Cy + Crexp(n)] = 0, (17)
Lg[Csexp(—n) + Caexp(n)] = 0, (18)

where Ci, C,, C3 and C; are all constants.
We construct the so-called zeroth-order deformation
equations

(1 = p)Ls[F(n;p) — fo(n)] = phyN;[F(n; p), G(n; )],

(19)
(1 = p)L[G(n: p) — go(n)] = PheN[F (n; p), G(n; p)].
(20)
subject to the boundary conditions
F(0;p) =0, G(0;p)=1,
OF (n; p) _ N
| =aean=o 1)
under the definitions
. o OF(n;p) 2\ 3G(n;p)
N F ), Glrsp)] = S5 4 (-3 )
+ BG(n; p), (22)
. Cw . 9Gp) 1 0G(n;p)
NelF (), G(n; p)] = o + gF(mP)a—n
OF (n;
- ) G p), 3)

where p is an embedding parameter, /i, and 7, are the
auxiliary non-zero parameters. Obviously,

F(;0) = fo(n),  G(n;0) = go(n), (24)
and
F(n; 1) =f(m), Gn;1) =g(n), (25)

when p = 0 and p = 1, respectively.

We expand F(y;p) and G(n;p) in Taylor’s power
series at p = 0. If the series are convergent at p = 1, due
to Egs. (24) and (25) we have
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n+ ifm(n), (26)
n) + igm(nx (27)
where
7 = o “eh | (3)
)= e 9)

being governed by the corresponding mth-order defor-
mation equations [16,17] as

Ly(fu(n) = tfuar(n)] = BsRu(n), (30)
Lg[gn () = An&m-1(1)] = igSu(n), (31)

subjected to the boundary conditions

Su(0) =0, g,(0)=0, f (00)=gu(o0)=0 (32)
with
Ru(n) = £ (n) + (B—3)ng,_,(n) + Pgu-1(n),  (33)

m—1

1
Su() = 1 +3 D _Saln)g 1, (n)

n=0

m—1

- ﬂnyZ(n)gmfl—n(n) (34)
n=0
and
el 23

It is found that f,,(n) and g,(n) governed by Egs.
(30)—(32) can be expressed by

m+1 m+1
N =ah,+ Y Y a,n exp(—kn), (36)
k=1 i=0
m+1 m+1 ) )
gn(n) =Y > bl exp(—kn) (37)
=1 i=0

for m > 1, where a,,, and b/, are coefficients. Substi-
tuting above expressions into Eqs. (30)—(32), we have the
recursive formulae

m+1

g =Ty Zﬂi,/(dﬁkl,k + ﬂ)”;—l,kb{n—l,k)
J=i

+he Y

j=max{0,i—1}

2 i j i i
<B - g) lu/c‘j-%—leinfl.k + Xm}"m—l,kam—lk
(38)

for1<k<m+land 0<i<m+1,
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a&,o = _Zagz,kv (39)
k=1
and
b, mk = 7m/1m lkbm 1 Tl O'mk (40)
for k=1 and 1<i<m+1, or 2<k<m+1 and
0<i<m+1, and
m+1
b21 - ( I)Z(ym m— |me l;+hg‘7m;) (41)
=2
Here
. 4 ! 1 1
i q i
:un,q - jZ, <l' ) (}’l + l)q,]ur[ nj;l-Jrl ’ Oglg% (42)
i J1, 0<i<m+1 and I<k<m+1,
Pk = {0, otherelse, (43)
and
d;lnk (i+2)(i+ I)A;ﬁaiﬁ 2k(i + ))M i:/l
kzj'lm & mk’ (44)
ein,k ( ))“H-l bi:ll k/bm kbm k (45)
forO<i<m+1land I <k<m+1,
) m+1 )
O{n,k = Z( m 1,k + Fm Nd + ¢mk + Afn,k)éfgq (46)
q=j
for2<k<m+1,0<,;<m+1,
an,l = Z (Tﬁn—l,l + ¢in,l)5{,i (47)
i=max{0,j—1}
for 0 <j<m+ 1, under the definitions
~h 0<j<gandn=1,
5 fz(qlﬂ), j=q+landn=1,
ng ! 1 1 ;
— <2<n+1>”’“1 T 21T )’ 0/<qandn>1,
0, j=q+landn>1,
(48)
and

v =+ 2+ DAY -
K218
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forO<i<m+1land I <k<m+1,

(49)
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m—1 min{k+1,n—1}
L
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k=0 j=max{ln—m+k}
min{k+1,q}
q-=i q-=i i
X Z am—k—l,n—j)“m—l—k.n—je;c.j (50)
i=max{0,g—m+k}
for2<n<m+1,0<g<m+1,

1 m—1
i 0 i
(pmvj Y Ay—k—1,06k, (51)
k=max{j—1,i—1}

for1<j<m+1,0<i<m+1,

m—1  min{m—kn—1}

Aﬁun = _ﬁz

k=0 j=max{l,n—k—1}

min{m—k,q}

x>

i=max{0,g—k—1}

q—i i i
ck.nfjj'mflfk,jbmflfk.j (52)

for2<n<m+1,0<g<m+1, and
cin.k =(i+ l)iiﬂaiﬂ - k)”i1,kain.k (53)

forO0<i<m+1and 1 <k<m+ 1.

Using above recursive formulae, we can calculate all
coefficients af, and %, by using only the first five:
ayo=1,a), =—1,ap, =1, by, =1, by, = 1, given by
the initial approximations (13) and (14). The corre-
sponding Mth-order approximations of (26) and (27) are

Table 2

M
Fn) = foln) + Y fouln)
m=1
M M m+l m+l ) )
=D dugt Y D D anexp(—kn),  (54)
m=0 m=0 k=1 i=0
M
g(n) ~ go(n) +>_ gn(n)
m=1
M m+l m+l ) )
= B’ exp(—kn). (55)
m=0 k=1 i=0

When M — +oo, we have an explicit, totally analytic
solution of Egs. (6)—(8).
3. Results analysis

In this section, we verify our analytic solutions by the
numerical results given by the finite difference method

Table 1
Parameters used in our analytic approach
o p hy g Order M
0 0 -1 -0.2 90
1 0.5 -1 -1 40
3 0.75 -1 -1 40
10 0.909 -1 -1 40
+00 1 -1 -1 40

Analytical results of /() at different order of approximation compared with numeric results in case of « = 1

n 5th order 10th order  15th order  20th order  25th order  30th order  35th order  40th order =~ Numeric
results
0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.8294 0.7692 0.7799 0.7777 0.7784 0.7781 0.7782 0.7782 0.7782
2 1.3237 1.2249 1.2447 1.2407 1.2420 1.2415 1.2417 1.2416 1.2416
3 1.6134 1.4921 1.5187 1.5135 1.5152 1.5147 1.5148 1.5148 1.5148
4 1.7814 1.6471 1.6791 1.6732 1.6751 1.6745 1.6747 1.6746 1.6746
5 1.8777 1.7362 1.7723 1.7660 1.7681 1.7674 1.7676 1.7675 1.7676
6 1.9325 1.7868 1.8261 1.8196 1.8218 1.8212 1.8213 1.8213 1.8213
7 1.9632 1.8153 1.8570 1.8503 1.8527 1.8521 1.8522 1.8522 1.8522
8 1.9802 1.8310 1.8747 1.8679 1.8704 1.8697 1.8699 1.8699 1.8699
9 1.9895 1.8397 1.8847 1.8779 1.8805 1.8798 1.8800 1.8800 1.8799
10 1.9945 1.8444 1.8903 1.8835 1.8862 1.8855 1.8857 1.8857 1.8857
11 1.9971 1.8470 1.8935 1.8867 1.8894 1.8887 1.8889 1.8889 1.8889
12 1.9985 1.8483 1.8953 1.8884 1.8912 1.8905 1.8907 1.8907 1.8907
13 1.9992 1.8490 1.8963 1.8894 1.8922 1.8915 1.8917 1.8917 1.8917
14 1.9996 1.8494 1.8968 1.8900 1.8927 1.8921 1.8923 1.8922 1.8922
15 1.9997 1.8496 1.8971 1.8902 1.8931 1.8924 1.8926 1.8925 1.8925
16 1.9998 1.8497 1.8973 1.8904 1.8932 1.8926 1.8927 1.8927 1.8927
17 1.9999 1.8498 1.8973 1.8905 1.8933 1.8926 1.8928 1.8928 1.8928
18 1.9999 1.8498 1.8974 1.8905 1.8933 1.8927 1.8928 1.8928 1.8928
19 1.9999 1.8498 1.8974 1.8905 1.8934 1.8927 1.8929 1.8928 1.8928
20 1.9999 1.8498 1.8974 1.8905 1.8934 1.8927 1.8929 1.8928 1.8928
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n Sth order  10th order 15th order 20th order 25th order 30th order 35th order 40th order Numeric results
0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 0.4834 0.5097 0.5035 0.5050 0.5044 0.5046 0.5045 0.5046 0.5046
2 0.2366 0.2653 0.2573 0.2593 0.2585 0.2588 0.2587 0.2587 0.2587
3 0.1175 0.1403 0.1330 0.1350 0.1341 0.1344 0.1343 0.1344 0.1343
4 0.0593 0.0749 0.0693 0.0709 0.0702 0.0705 0.0704 0.0704 0.0704
5 0.0305 0.0401 0.0363 0.0375 0.0370 0.0372 0.0371 0.0371 0.0371
6 0.0160 0.0214 0.0191 0.0199 0.0195 0.0197 0.0196 0.0196 0.0196
7 0.0085 0.0114 0.0100 0.0106 0.0103 0.0104 0.0104 0.0104 0.0104
8 0.0046 0.0060 0.0053 0.0056 0.0055 0.0055 0.0055 0.0055 0.0055
9 0.0025 0.0031 0.0028 0.0030 0.0029 0.0029 0.0029 0.0029 0.0029
10 0.0013 0.0016 0.0015 0.0016 0.0015 0.0016 0.0016 0.0016 0.0016
e [3,6]. Parameters used in our analytic approach are listed

i in Table 1. It is found that our analytic approximations

i agree well with the numerical ones, as shown in Tables 2

i and 3, and in Figs. 1 and 2.

r As shown in Figs. 3 and 4, our analytic results agree
_oF well with numerical ones in a wide range of parameter
e r B. Note that solution for = 1, corresponding to a —
o T +oo, is also given. Due to the singularity at o = —2/5
= 0t reported by Merkin and Zhang [5], higher order of
£ - approximation is needed when « =0, as shown in

5 Table 1.

- The convergence of the HAM series is controlled by

- the two important parameter 7, and 7,. The parameter

3 hy can be set to —1 for f > 0.5, and dropped for < 0.5,

as shown in Table 1.
ol v v v v
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p

Fig. 1. Analytic results of (1 +o<)%f’(0) compared with nu-
merical ones given by Na and Pop [6]. Symbol: numerical re-
sults; solid line: homotopy analysis results.
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Fig. 2. As Fig. 1, but for —(1 + a)—%g’(O).
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Fig. 3. Homotopy analytic results for f(n) compared with
numerical ones. Symbol: numerical results; solid line: homo-
topy analysis result when f§ = 0; dotted line: homotopy analysis
result when f = 0.75; long dash line: homotopy analysis result
when = 1.
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Fig. 4. As Fig. 3 but for g(n).

4. Conclusions

We apply the HAM in this paper to obtain an ex-
plicit, totally analytic, uniformly valid solution to the
so-called Cheng-Chang equation appeared in free con-
vection in porous medium above a horizontal flat surface.

The validity of our analytic solution is verified by
numeric results. To the best of our knowledge, it is the
first time that such an explicit, uniformly valid, totally
analytic solution to Cheng-Chang equation is given.
This explicit analytic solution might find wide applica-
tions in geothermal energy industries, groundwater
pollution transport, nuclear waste disposal, chemical
reactors engineering, insulation of buildings and pipes,
and storage of grain and coal, and so on.
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